Dinámica de la rotación

Posted on Actualizado enn

01. Una polea está formada por dos discos soldados de 2 y 1 kg de masa y radios 1 y 0,5 m. Tiene enrolladas dos cuerdas en sentidos contrarios de las que cuelgan masas de 3 y 5 kg respectivamente. Calcular la velocidad de cada cuerpo 3 s después de iniciado el movimiento.

02. Un cilindro tiene una cuerda enrollada a su alrededor que está fijada al techo. Cuando se deja en libertad desciende girando sobre su eje. Calcular el tiempo que tarda en recorrer 3m en vertical.

03. Un disco gira a 1800 rpm. En un instante determinado se le aplica una fuerza de frenado tangencial y constante que hace que se detenga en 30s. Calcular el momento de la fuerza de frenado sabiendo que el momento de inercia del disco es 50 kg.m2. ¿Cuántas vueltas dará antes de pararse? ¿Cuánto tiempo tarda en pararse?

04. Tres masas puntuales de 2 kg cada una están situadas en los vértices de un triángulo equilátero de 3m de lado. Calcular el momento de inercia respecto a un eje:

a) perpendicular al triángulo y que pasa por el punto medio de un lado.

b) perpendicular al triángulo que pasa por el baricentro.

05. Sobre un disco que gira a razón de 33 rpm alrededor de un eje vertical que pasa por su centro, se coloca un objeto de madera. El  coeficiente de rozamiento entre ambos es 0,3. Calcular la máxima distancia al eje de giro a la que se puede colocar el para que gire con el disco.

06. Sobre un disco que gira a 1800 rpm en torno a un eje vertical, que pasa por su centro, cae otro disco, de doble masa y mitad de radio que no rota. ¿Con qué velocidad girará el conjunto?

07. Una partícula de 3 kg de masa tiene una velocidad variable dada por v = 3t2i+t3j-2tk. Pasa por el punto (1,2,-1) en el instante t=1s. Calcular el valor del momento lineal y el momento angular en ese momento.

08. De las siguientes afirmaciones ¿cuáles son ciertas? Razonar la respuesta.

A. Un patinador da vueltas sobre sí mismo con los brazos extendidos. Cuando acerca los brazos al cuerpo su energía cinética disminuye.

B. El momento de inercia de un sólido rígido es una constante del cuerpo.

C. El momento de inercia de un saltador de trampolín permanece constante hasta que entra en el agua.

D. El momento angular de un sistema varía si la suma de los momentos de las fuerzas exteriores que se le aplican es nula.

E. Un movimiento de rotación de un sólido rígido se produce debido al momento de una fuerza.

F. Todas las partículas de un sólido rígido que gira alrededor de un eje tienen la misma velocidad lineal.

G. Una partícula debe moverse en una circunferencia para tener momento cinético.

H. Un cuerpo solo puede tener un momento de inercia.

I. La velocidad lineal y la velocidad angular tienen las mismas dimensiones.

J. Todas las partículas de un cuerpo que rota tienen la misma aceleración angular.

K. El momento de inercia de un cuerpo no depende de la posición del eje de rotación.

L. El momento de inercia de un cuerpo depende de la velocidad angular que tenga el cuerpo en el momento de determinarlo.

 

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s